Noble Liquid Detector R&D at BNL

Craig Thorn

DOE Detector R&D Program Manager Visit
October 3, 2012

a passion for discovery

Long Drift Noble Liquid Detectors

Leading to Giant LAr TPCs

1973 R806 1980 D0 1990 **NA48** 2000 **ATLAS** 2010 Scale/Time of Effort

Brookhaven Science Associates

W. Willis, V. Radeka, Nucl. Instr. Methods, 120 (1974) 221

HELIOS (first cold electronics)

LAr Generic Detector R&D

LAr properties measurements, cold electronics development, TPC construction, device prototyping

MicroBooNE Experiment

Resolve miniBooNE low-E excess, precision neutrino cross section measurements of E, QE, 1π , NC π^0 , LAr technology development

LAr1 Experiment

"Far" detector for microBooNE, short baseline physics, backgrounds, development of giant LAr technologies (membrane cryostat, modular TPCs)

•LBNE LArTPC

Mass hierarchy, θ_{13} , CPV in lepton sector, PDK, supernovae, ...

Noble Liquid R&D Effort for LAr TPCs

Basic properties measurements in LAr, Ne, Xe Charge transport

- ✓ Electron diffusion
- ✓ electron attachment
- ✓ Recombination
- ✓ Positive ion mobilities

Light transport

- ✓ optical absorption
- ✓ Rayleigh scattering

LAr TPC Effort at BNL

Cryogenics, TPC, Cold Electronics ← → LAr Detector R&D, MicroBooNE, LAr1, LBNE FD

MicroBooNE Project management:

Craig Thorn Deputy Project Manager for AD

Sue Duffin L2 Manager for Cryostat

Hucheng Chen L2 Manager for Readout Electronics George Mahler L2 Manager for Detector Integration

LBNE Project management:

Mary Bishai Project Scientist
Penka Novakova Controls Specialist
Jeff Dolph Project Engineer

Milind Diwan Collaboration Co-Spokesperson

Jim Stewart L2 Manager for FD Bo Yu L3 Manager for TPC

Craig Thorn L3 Manager for Cold Electronics

LAr1 Experiment members:

H. Chen, C. Thorn, D. Lissauer, V. Radeka, B. Yu,

G. Mahler, S. Rescia, S. Duffin, Y. Li

Supported by KA15

Instrumentation Division:

Veljko Radeka **Division Head** Gianluigi DeGeronimo ASIC design & Shaorui Li development Neena Nambiar **Emerson Vernon Jack Fried** Sergio Rescia Joe Mead Trivini Rao Optics, QE **Thomas Tsang** Bo Yu TPC Design George Mahler (CAD)

Physics Department:

Harry Thiemann

Craig Thorn

Hucheng Chen
Kai Chen
Pierrot Bichoneau
Sue Duffin
Jack Sondericker
Anatoli Gordeev
Jason Farrell
Andres Ruga
Francesco Lanni
YiChen Li
Bill Morse

Electronics

Electronics

Electronics

Electronics

Cryostats &
cryogenics

LAr R&D

Charge and Light Production in Cold Supercritical Neon

eBubble Cryostat

Collaboration with Columbia U.
Formerly used for R&D on light production from GEMs in high density supercritical Ne

- Variable temp, high pressure cryostat
- Windows for optical measurements
- ~4 liter volume
- Used for charge and light measurements

High Pressure Cryostat

Generic LAr R&D Properties of LAr

Transport properties: scintillation light absorption and electron diffusion

Detected Photoelectrons

Light detection in LAr

Net Photon Collection Efficiency w/ and w/o Rayleigh Scattering 0.200 $\lambda_{ABS} = \infty$ $\lambda_{ABS} = 300$ 0.100 $\lambda_{\text{ABS}}=200$ 100 Detector Photon Efficiency No scattering 10 Rayleigh scattering of 128nm 0.002 scintillation light in LAr 0.001 300 400 100 200

Liquid	Wavelength	Scattering Length (m)		Absorption Length (m)
	(nm)	Calculated	Measured	Deduced
Neon	80	60	-	-
Argon	128	95	66	200
Krypton	147	60	82	negative!
Xenon	174	30	29	>800

Diffusion of electrons in LAr

Electron Energy in LAr: Data + Theory of Artazhev

Electron Drift and Diffusion in LAr

High Brightness Photocathodes in LAr

Extensive scientific and engineering expertise in Instrumentation Division in laser and photocathode techniques are being used to advance

R&D on photocathode materials to improve photon detector performance and for high-brightness electron sources in LAr

LBNE LAr10 Modular Design Concept

Cryostat end cut open to show assembly

LAr TPC readout electronics The Future - Cold

- Best SNR and independent of detector size (long cables increase S/N)
- ✓ Few cables in LAr, ensures LAr purity& long drift
- ✓ Few cryogenic feedthroughs (reduced heat load and cryogenic risk)
- ✓ Few interconnects & simple cabling (avoid signal loss)
- ✓ Modularity: electronics on detector can test / evaluate system through life-cycle
- Scalability: decouples cryostat and electronic designs (can optimize each)

Cold electronics: better performance at lower cost and lower risk

Cavern

LArTPC Readout ASIC Development

Readout Electronics Characterization

Signal processing in LAr

Design and characterization at low temperatures of analog front-end (FE) and ADC CMOS ASICs (with FNAL, MSU and SMU)

Motherboard with twelve 16 channel FE ASICs

Noise is 550 e rms at 77K

Channel-to-channel gain variation is < +/-2%

Power distribution in LAr

Characterization at LAr temperatures and long-term stability of ASIC and commercial voltage regulators. (ASIC design in collaboration with GIT)

Microelectronics Summary

- BNL has extensive experience in the design of low-power, low-noise, mixed-signal integrated circuits (more than 30 ASICs in the past 10 years
- The design process is defined and predictable, characterized by high yield and high reliability for operation from RT to 77K
- Long lifetime in radiation and cryogenic environments can be achieved using appropriate design techniques and processes
- ASIC challenges for future large detector systems
 - Operation in extreme environments cryogenic, rad., space
 - Mixed analog/digital systems with low noise and high speed
 - High degree of data sparsification, compression and multiplexing

Goals for the next year

- ✓ Transverse and longitudinal electron diffusion measurements
- ✓ Electron attachment cross section measurements for common LAr impurities
- Construction of a cryostat for optical characterization of impurities in LAr
- ✓ Absorption measurements of VUV light in LAr for common LAr impurities
- ✓ Characterization of full cryogenic readout system using existing front-end and ADC, with an FPGA

